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Note 

Numerical Solution of the Vlasov Equation by Transform Methods 

Numerical techniques represent a powerful means for the investigation of 
nonlinear effects in plasmas, and especially for the solution of the nonlinear 
Vlasov equation. In this latter case, one has to deal essentially with the set of 
equations (written in dimensionless form): 

g + v g + E(x, t) g = 0, 

aE -= fdv-1. 
ax f (2) 

(The symbols have their conventional meaning and we are restricting ourselves to 
the one-dimensional case). 

It is sometimes advantageous to transform these equations from the representa- 
tion in x - v space. The use of transform methods for the numerical solution of the 
set of Eqs. (1) and (2) has been reviewed by Armstrong et al. [l] and Joyce et al. [2] 
who showed that such numerical solutions are hampered by a recurrence effect. 
The purpose of the present note is to discuss a method whereby a pseudo collision 
operator is formally added to Eq. (1) in order to eliminate the recurrence effect 
when numerically solving the Vlasov equation via a Hermite polynomials expan- 
sion. This is done with the intent of developing a two-dimensional scheme for the 
numerical solution of the Vlasov equation. 

The expansion of the distribution function in velocity space in terms of Hermite 
polynomials has been studied in particular by Grant and Feix [3], Armstrong [4], 
and Knorr [5]. In this case, the distribution function is expanded as follows: 

f(x, v, t) = f b,(x, t) H,,(v) e-(1/2)v”. 
L-0 

(3) 

When the series (3) is inserted into the Vlasov equation, and the coefficients for 
each Hermite polynomial are collected, one obtains the following infinite system 
of differential equations: 

E(x, t) b,-, = 0. 
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Since computers handle only finite systems, one is obliged to truncate the system 
in Eq. (4) at, say, v = n. This results in what appears to be a kind of numerical 
instability, which is in fact a recurrence effect due to the attempt to represent the 
continuous eigenspectrum of the infinite system, in Eq. (4), by a discrete finite 
spectrum of the truncated set [2]. 

In order to circumvent the difficulty, it was suggested that the addition of a 
small imaginary part to the eigenfrequencies of the truncated system will damp the 
solution for sufficiently large times and hence avoid the recurrence effect. This 
method has been studied by Knorr [5]. Another method of avoiding recurrence 
consists in damping selectively the coefficients b, when v is close to n. This 
corresponds to a smoothing of the distribution function if the ripples in velocity 
space exceed a certain steepness. The selective damping can be accomplished by 
adding a term 

-Ev2’+lb 
Y (5) 

to the right-hand side of Eq. (4) (e is of the order of n-(“‘+l), where r is an integer 
[6]), which is equivalent to adding a collision operator to the right-hand side of 
Eq. (1): 

C(u)2’+lf = c[(a/au)(a/au) + ,)]2”flJ (6) 

Knorr and Shoucri [6] proposed the use of a slightly different collision operator, 
added to the right-hand side of Eq. (1) of the form: 

(8/axy C(u)2++l.J (7) 

The term a2/3x2, which is added formally in expression (7) results in a diffusion in 
configuration space which causes the Fourier modes having the highest wave- 
numbers (hence the lowest recurrence time) to be damped selectively, in addition 
to the selective damping of the high v coefficients effected by the operator C(U)~~+~. 

The operator in expression (7) has been used by Shoucri and Knorr [7] for the 
Chebyshev representation of the Vlasov equation, but has not been tried previously 
for the Hermite representation. Situations where the Hermite representation can 
be more advantageous than the Chebyshev representation have been discussed in 
171. 

To compare with results previously obtained using the Chebyshev representation, 
the case of a symmetric two-stream instability has been studied with the initial 
condition: 

f(x, u, 0) = (l/(23r)l12) u2 exp(--v*/2)(1 + A cos kx) (8) 

with A = 0.05 and k = 0.5. Equation (4) with the collision operator given in 
expression (7) was solved numerically using a leapfrog scheme, initialized by a 
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Lax-Wendroff step. which was discussed by Knorr [5]. The results are shown in 
Figs. 1 and 2. Figure I gives the magnitude of the first two harmonics k = 0.5, 1 as 
a function of time. In Fig. 2, the total electric energy is plotted linearly in time; as 
will be observed, it follows the characteristic exponential growth, saturation, and 
oscillations of the electric field, due to the trapping of the particles. These plots have 
the general physical features of those reported in [5] and [7]. They have been 
obtained with 30 polynomials and 16 points in space, i.e., with an amount of 
information equivalent to 480 “particles.” The damping term in expression (7) has 
been applied with E = 5.0/(30)3. 

I I I I I I I 1 
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FIG. 1. Plot of the first two harmonics of the electric field (in arbitrary units) for a two-stream 
instability with the initial condition f(~, v, 0) = (1/(27r)1W exp(-ve/2) (1 + A cos kx) with 
A = 0.05 and k = 0.5. The figure gives the evolution in time of the logarithm of the absolute 
value of the first two modes: (a) k = 0.5; (b) k = I. 

TIME T 

FIG. 2. Plot of the total electric field energy against time. 
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To further illustrate the applicability of expression (7) Fig. 3 shows the result 
obtained when studying the evolution of a strongly nonlinear Landau damping. 
The initial condition is: 

fk u, 0) = (1/(2~)‘/“) exp(--u2/2)(l + A cos kx), (9) 

with A = 0.5 and k = 0.5. The time evolution of the fundamental mode k = 0.5 
(curve (a) in Fig. (3)) is very similar to the one reported in [5]: a damping which is 
much stronger than that obtained when using the linear theory is observed for the 
initial part of the curve, and a decay of the amplitude by roughly 14 orders of 
magnitude occurs. Then the amplitude grows back and settles to a fairly constant 
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FIG. 3. Plot of the first two harmonics of the electric field (in arbitrary units) for a strongly non- 
linear Landau damping with the initial conditionf(x, u, 0) = (l/(2+* exp( -02/2)(1 + A cos kx) 
with A = 0.5 and k = 0.5. The figure gives the evolution in time of the logarithm of the 
absolute value of the first two modes (a) k = 0.5; (b) k = 1. 

level. The results obtained for the second mode k = 1 are represented by curve (b) 
of Fig. (3). Although, at the beginning, the time evolution follows closely the 
results reported in [5], the recurrence maximum is observed to occur at a time 
t E 10 rather than I = 15 as in [5]; moreover, the amplitude differences between 
the peaks and the valleys surrounding this maximum are less pronounced than in 
[5]. Different factors can explain these differences. Most important is the fact that 
the method used in [5] to damp the recurrence effects did not effect a selective 
damping of higher k modes (as effected here by the operator given in expression 
(7)). As a result of this, the higher modes which travel faster than the fundamental 
mode are less damped than the latter when they recur. Also, the results reported 
in [5, Fig. (3)] have been calculated with only 8 points in x, while 16 points have 
been used for the present calculations; this provides a better resolution for higher 
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k modes. In agreement with the results in [5], no sudden decay is observed after 
t = 40, contrary to what was reported by Nuehrenberg [9]. 

The results obtained indicate that the scheme performs correctly. Work is in 
progress to use it in a two-dimensional scheme for the numerical solution of the 
Vlasov equation [S]. 
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